Maximum Area of a Triangle

Problem: Use the Arithmetic Mean -- Geometric Mean
Inequality to show that the maximum area of a triangular
region with a given perimeter is attained when the triangle is
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Solution:
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Semi-perimeter of the triangle, § =

We can find the area using Heron’s Formula, A = \/ s(s—a)(s—b)(s—c)

Using AM-GM Inequality,
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Since, 25 = a + b + ¢, we have

(s—a)(s=b)(s—c) < [35 _ 25]3 = [E]B _5
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Since a + b + c is a constant, then S = is also a constant

Hence a = b = ¢ = An Equilateral Triangle.

So, A = s(§)3 =5




